せん断部材と曲げ部材が混在する RC 造架構の耐震性能評価に関する研究

2. 構造	8. 鉄筋コンクリー	ト構造
RC 造架構	耐震診断	被災度区分判定基準
せん断柱	変動軸力	

○高橋香	幸菜子 1*
三浦	耕太 1*
松川	和人 2*
前田	匡樹 3*
	 ○高橋香 三浦 松川 前田

研究の背景と目的

現在、部材単体については、数多くの実験や研究が行 われ、強度や変形能力など耐震性能の適切な評価が可能 となってきている。それに対し、架構全体に関する研究 は、解析を中心とした研究は行われているが、実験に関 しては十分とは言えない。特に、せん断部材と曲げ部材 など破壊モードが混在する架構は、せん断部材の破壊後 に負担していた応力が梁を介して周辺架構に伝達される ことが考えられ、部材単体の静的実験から得られる挙動 と架構全体の挙動が異なることが予想される。

そこで、本研究ではせん断部材と曲げ部材が混在する RC 造架構の耐震性能の検討を目的として、静的加力実 験を行ない架構の挙動を明らかにするとともに、耐震診 断基準 1)及び被災度区分判定基準 2)といった耐震性能評 価指標との比較、及び架構の解析モデルの検討を行った。

2 静的加力実験

2.1 実験概要

試験体の概要を図1、及び表1に示す。スケールは実 大の 1/2 である。南北の柱、及び梁は曲げ降伏が先行す る曲げ部材として、中央柱は腰壁を有し、短柱(ho/D=2) となることでせん断破壊する部材として計画した。

各柱の上部に接続した鉛直ジャッキにより、一定軸力を 載荷し、梁の両端に接続した水平ジャッキにより北側に 変形する方を正載荷として、正負交番繰り返し載荷を行 い、層間変形角 4%の載荷後に負側で押し切った。計測 計画として、ジャッキ、及び南北の柱の内法高さ中央位 置に設置した分力計により、各柱の軸力、せん断力の計 測を行った。本実験では、荷重変形関係に加力方向によ る大きな違いは見られなかったため、押し切りを行い、 より大きな変形でのデータが得られている負側について のみ検討を行う。

2.2 実験結果

実験結果として図2に架構全体、図3に各柱部材の荷 重変形関係を示す。尚、図中には後述する3.1で行った 耐震診断基準に基づき算定したC-F曲線を荷重変形関係 に換算したもの、及び3.3で行った非線形骨組解析結果 とを併せて示す。層間変形角 0.1%で梁端および両側柱 柱脚に曲げひび割れが生じた。層間変形角 0.5%で中央 柱のせい面及び接合部にせん断ひび割れが発生し、腰壁 に部分的なコンクリート剥落が見られた。層間変形角 1.0%で中央柱のせん断ひび割れが大きく進展し、腰壁の コンクリート剥落面積も広がった。層間変形角 1.8%で 中央柱は最大耐力を迎え、2%で腰壁の損傷が壁体を貫 通し、全ての柱脚で圧壊によるコンクリートの剥落が見 られ、層せん断力が最大となった。その後、中央柱の負 担せん断力の低下に伴い、層せん断力も緩やかに低下し た。中央柱に関して、負担せん断力の低下に伴う、軸縮 み及び軸力支持能力の低下はほとんど見られなかった。 負側押し切り時に、層間変形角 8.1%で中央柱の軸力支 持能力が急激に低下し、中央柱と梁で中央鉛直ジャッキ による鉛直力を負担できず、鉛直方向に大きく縮み、架 構全体の終局を迎えたため、その時点で加力を中止した。 南北の柱の荷重変形関係に関しては、変動軸力の作用に よる負担せん断力の差や、梁の伸びによる部材変形角の 差が見られた。

試験体配筋等一覧 表 1

部材	南柱、北柱	中央柱	南梁、北梁
内法寸法 h _{0、lo} [mm]	1400	800	2350
せい : D[mm]	400	400	400
幅 : b[mm]	400	400	300
主筋	16-D16(SD345)	16-D22(SD345)	10-D16(SD345)
引張鉄筋比:p _t [%]	0.62	1.21	1.44(上端)
			0.96(下端)
軸力比:η ₀	0.09	0.15	—
+ 1 新神母な	目-D10@50	目-D6@50	□-D6@50
ビル阿州市国加	(SD295)	(SD295)	(SD295)
せん断補強筋比:pw[%]	1.42	0.42	0.85
せん断余裕度	1.31	0.69	1.47(上端)
		0.62	2.02(下端)

The structural performance evaluation for RC frame mixed shearing and bending Column

TAKAHASHI Kanako, MIURA Kota, MATSUKAWA Kazuto, MAEDA Masaki

3 実験と現行の耐震性能評価指標との比較

3.1 耐震診断基準との比較

3.1.1 比較概要

耐震診断基準に基づき、靭性型保有性能基本指標式 (1)(診断基準(4)式)及び、強度型保有性能基本指標式(2) (診断基準(5)式)により、保有性能基本指標 Eoを算定し、 式(3)により構造耐震指標 Is 指標を算定し、実験との比 較を行った。本実験では中央柱に関して、腰壁の存在を 考慮し、内法高さを腰壁から梁下端までの 800mm とし た場合(以下腰壁考慮)と、腰壁部に損傷が見られたこと から、腰壁が無い状況を仮定し、内法高さをスタブから 梁下端までの1400mmとした場合(以下腰壁無視)の2通 りについて比較を行った。

$E_0 = a/b$	$(C_1 \times F_1)^2 + (C_2 \times F_2)^2$	(1)
- L V		(.,

(2) $E_0 = (C_1 + \sum \alpha_j C_j) F_1$ (3) $I_s = E_0 \times S_D \times T$

C1,F1:F指標が小さい部材(中央柱)のC指標,F指標 C₂,F₂:F 指標が大きい部材(南柱・北柱)のC指標,F指標 α:強度寄与係数

ここで、建物重量 W は鉛直ジャッキ軸力の総和である

1850kN、経年指標T及び形状指標Spは1.0と設定した。 実験に関して、層せん断力が最大となるステップを最 大耐力時(①)、押し切り前までの各変形ピーク時におい て、それぞれ Is値を算出し、Is値が最大となるステップ を終局限界変形時(2)と定義する。また、診断基準(4)式 との比較を行うため、C 指標は実験値の最大耐力から、 F 指標は中央柱については最大耐力となる変形角、南北 柱は終局限界変形角から式(1)により Is値を算出した。

3.1.2 比較結果及び考察

図2と図3、及び表2に比較結果を示す。各部材の最 大耐力(C指標)に関しては、実験値と計算値の比が、0.90 ~1.33 倍と概ね診断基準と実験結果が一致していた。そ れに対し、診断基準(5)式で算定した Is 値は 2.02~4.63 倍、診断基準(4)式で算定した場合であっても約 1.5 倍の 差が見られ、安全側ではあるが、架構の耐震性能を大き く過小評価する結果となった。以下に差が生じた原因に ついて考察を示す。

①最大耐力時

耐震診断基準では、中央柱は層間変形角 0.2%~0.4% でせん断破壊し、せん断破壊後は残存耐力を完全に失い 0 となると仮定している。実験では、中央柱が最大耐力 を迎える変形角が層間変形角で1.77%と大きく、最大耐 力後の耐力低下が緩やかである。そのため、中央柱が最 大耐力を迎えた後に、架構全体としての最大耐力を迎え、 その時の F 指標が 2.57 と耐震診断基準と比較し 2.5~ 3.2 倍大きくなる。

耐震診断基準では脆性部材破壊時に、靭性部材の強度 に強度寄与係数 α を乗じることで靭性部材の負担せん断 力を算定している。診断基準によると、中央柱に対する

曲げ柱のαは0.51~0.72であるのに対し、実験結果では、 中央柱が最大耐力となる変形角が大きく、その時の曲げ 柱の負担せん断力から求めたαは0.96に相当する。その 結果実験結果のC指標に大きな差が生じた。 ②終局限界変形時

診断基準では破壊した極脆性柱の残存耐力を無視し、 曲げ柱の強度のみで I。値を算出している。それに対し実 験では、中央柱が最大耐力を迎えた後の耐力低下が緩や かである。終局限界変形時と定義した層間変形角 4%の 時点でも中央柱は最大耐力に対し、90%以上の水平耐力 が残存しているために差が生じた。

③診断基準(4)式

C値 層せん断力Q(kN)

曲げ柱の終局変形及び中央柱が最大耐力となる変形に 関して、診断基準では実験結果を過小評価し、実験結果 を過小評価していた。

図3 各柱の負担せん断力-層間変形角関係 - 0 ·覧

表 2	耐震診断結果一
-----	---------

		実験	診断基準		解	析
			腰壁考慮	腰壁無視	腰壁考慮	腰壁無視
	C指標	0.64	0.45	0.48	0.57	0.60
	F指標	2.60	0.80	1.00	2.07	2.11
(1)	α	(0.96)	0.51	0.72	(0.98)	(0.98)
	Is 値	1.65	0.36	0.48	1.17	1.27
	C指標	0.59	0.33	0.33	0.54	0.55
2	F指標	3.40	3.02	3.02	3.40	3.40
	Is 値	2.00	0.99	0.99	1.85	1.87
3	Is 値	1.14	0.74	0.74	0.76	0.77

3.2 被災度区分判定基準との比較

3.2.1 比較概要

震災を受けた建築物に対し、余震に対する倒壊の危険 性および補修や復旧の要否を判断する指標として、被災 度区分判定基準²⁾による耐震性能残存率 R が用いられて いる。耐震性能残存率 R は、被災前に対する被災後の耐 震性能(I,指標)の比として式(4)により算出される。

$$R = \frac{D^{IS}}{2}$$
(4)

被災後の耐震性能 pJs 指標は、厳密には強度及び靱性 を損傷度に応じて低減させ計算するものではあるが、靱 性指標である F 指標を低減させてグルーピングし直すこ とは実務的に煩雑であるため、強度指標である C 指標の みを式(6)による η によって低減し、 η の重みづけ平均を 行うことによって pJs 指標を算出することとされている ²⁾。ここで、 η の重みづけ指標を寄与度 β と定義すると、 上記の式は式(5)のように書き換えられる。

$$R = \frac{D^{IS}}{Is} = \sum (\eta \times \beta)$$

$$\eta = \frac{E_r}{E_d + E_r} = \frac{E_r}{E_{max}}$$
(5)
(6)

ηは各部材の損傷度に応じて定められる耐震性能低減 係数である。ηは、実際の被害調査では、部材毎に破壊 性状やひび割れ等の損傷度に基づき決定されるが、図4 に示すように残存エネルギー吸収能力の概念が基となっ ており、今回は実験結果の荷重変形関係の包絡線から算 定した。終局変形は実験で中央柱が鉛直方向に大きく縮 み、急激にせん断力の低下した層間変形角 8.1%の時点 とした。図5 に診断基準(5)式により耐震性能を評価する 場合の寄与度(β (cal_①)及び β (cal_②)の概念図を示す。層せん 断力に対する各柱のせん断力負担割合 $Q_i\Sigma Q_i$ として式 (7)によって算出される。

$$\beta_{(cat]}, @) = \frac{Q_i}{\sum Q_i}$$
(7)

また、R(exp)は、架構全体の残存エネルギー吸収能力か だ ら算定した。

3.2.2 比較結果及び考察

図7に上記の方法で求めた R_{(cal})と R_{(exp})の比較結果を 示す。尚、本試験体では R 及びβ は中央柱の腰壁の存在 の有無に関らず、同様の傾向が見られたため、損傷状態 から腰壁の存在を無視した結果のみを示した。

最大耐力時($R_{(cal_{0})}$)においては、 $R_{(exp)}$ を過小評価、また、 終局限界変形時($R_{(cal_{0})}$)、及び診断基準(4)式($R_{(cal_{0})}$)にお いては $R_{(exp)}$ を過大評価している。 η を各部材の実験結果 に基づき算定していることから β がこの差の原因であり、 現行の指標では適切に評価されていないと考えられる。

そこで、実験結果から算定される実際の寄与度 $\beta_{(exp)}$ として、式(8)より架構全体のエネルギー吸収能力 Σ E_{maxi} に対する各部材のエネルギー吸収能力 E_{maxi} の比を 算出する。概念図を図6に示した。

$$\beta_{(exp)} = \frac{E_{max\,i}}{\sum E_{max\,i}} \tag{8}$$

また、診断基準(4)式によって算出する場合は、式(7) のように単純に負担せん断力の比として表すことができ ない。そこで、式(9)により、各部材について C 指標と F 指標の積である E_0 指標を二乗した値により重みづけ を行い、 $\beta_{(cal_{(2)})}$ を算出し、比較を行った。

1

$$\beta_{(cal_{3})} = \frac{E_{0i}^{2}}{\sum E_{0i}^{2}} = \frac{(C_{i} \times F_{i})^{2}}{\sum (C_{i} \times F_{i})^{2}}$$
(9)

以上により算出した β の比較結果を図8に示した。最 大耐力時(β (cal_①))の場合は、中央柱の影響を約2倍過大 評価し、逆に、終局限界変形時(β (cal_②))の場合は曲げ部 材の寄与度を3割程度、診断基準(4)式(β (cal_③))の場合は 1割程度過大評価していることが分かる。

3.3 骨組の解析に基づく耐震性能評価

3.1 による耐震診断法及び 3.2 による耐震性能残存率 に関して実験結果との比較を行なった結果、実験値と現 行の評価指標との間に、中央柱の残存耐力等による大き な差が見られた。そこで、中央柱に耐力低下する復元力 特性を設定し、側柱に MS バネを設定した架構モデルの 非線形骨組み解析を行い、適切な構造性能評価が可能で あるか検討を行った。

3.3.1 解析概要

現在一般的に行われている荷重増分による静的漸増載 荷解析は、本試験体のように、耐力劣化をする部材を含 む架構には増加する外力に対して内力が増加しなくなる ため適用できない。そこで、本研究では変位増分による 静的漸増載荷解析を行った。本手法は、剛床を仮定し、 同一床レベル位置に属する節点に等しい変位増分を与え、 全体剛性マトリクスと掛け合わせることで節点外力を算 出する方法である。解析プログラムとして、フレーム弾 塑性解析プログラム SNAP を用いた。

各部材のモデル化の概要を図8に示す。中央柱の腰壁 を考慮する場合と腰壁の存在を無視する場合の2通りに ついて解析を行った。腰壁の存在を考慮する場合は腰壁 部分を剛域とした。中央柱のせん断バネの復元力特性に 関しては、図9に示す芳村ら³⁾の提案した、せん断補強 筋比 pw、主筋比 pg、軸力比 ηoを変数とする、せん断柱 の崩壊変形の推定式及び崩壊変形を基にした最大強度以 降崩壊に至るまでの荷重変形関係推定式により算定した。 本試験体は適用範囲外だが、適用可能であると仮定して 解析を行った。また、曲げバネ、軸バネの復元力特性は それぞれトリリニア、弾性とした。また、南北の柱に関 しては、変動軸力の影響を考慮するため、材端ヒンジ部 に MS モデルを、線材部にせん断バネを組み込んだ。

3.3.2 解析結果

解析結果として荷重変形関係を図2から図3に示す。

各部材の荷重変形関係に関して、北柱に関しては変動 引張軸力の作用による曲げ強度の低下を追跡することが できた。南柱に関しては、解析では梁が降伏することに よって負担せん断力が上昇していないが、実験では柱主 筋の曲げ降伏後の大変形時においても負担せん断力が上 昇することが原因で荷重変形関係に差が見られる。中央 柱に関しては、腰壁を考慮した場合の最大強度は実験結 果との対応が見られるが、最大耐力を迎える変形は腰壁 を無視した場合とともに適切に評価されていない。また、 中央柱のせん断破壊後の耐力低下の勾配に関しても実験 結果との差が見られ、これらに関しては、今後検討が必 要である。しかしながら、中央柱がせん断破壊した後に 層せん断力が最大となり、その後緩やかに耐力が低下す る架構全体の荷重変形関係の傾向は実験結果を概ね追跡 できたといえる。

3.3.3 解析結果に基づく架構の耐震性能評価

解析結果に基づいて Is 指標を算出したところ、現行の 耐震診断基準では 2.02~4.63 倍見られた差が、1.07~ 1.49 倍の精度で評価を行うことができた。また、各部材 の残存エネルギー吸収能力から寄与度 β (ana)を解析結果 に基づいて求め、図8 に示した。中央柱のせん断破壊後 の耐力低下が実験よりも緩やかであることから、中央柱 の寄与度が実験よりも大きく算定された。しかし R(ana) は安全側の評価であり、寄与度については現行基準より も適切な評価が可能となった。せん断部材の耐力低下や 側柱の変動軸力を考慮した解析により、各部材の荷重変 形関係をより精度よく追跡することができれば、寄与度、 及び耐震性能残存率についても適切な評価が行える可能 性が示されたと言える。

図9 芳村式の概要

4 まとめ

曲げ柱とせん断柱が混在する架構の耐震性能の適切な 評価を目的として、静的加力実験及び耐震性能評価指標 との比較、解析モデルの検討を行い、以下の知見を得た。 (1)耐震診断基準では、個々の部材の最大耐力に関しては 実験値と大きな差は見られないが、中央柱の最大耐力を 迎える変形角及びその後の耐力低下が正しく評価されて おらず、その結果、架構の耐震性能を安全側ではあるが 大きく過小評価していた。

(2)耐震性能残存率に関しては、被災度区分判定基準にお ける各部材の負担せん断力の割合である寄与度の差によ り、実験値との差が見られた。

(3)架構全体の荷重変形関係や、その結果に基づく耐震性 能評価が、実験値と概ね対応が見られたことから、芳村 式による脆性破壊部材のモデル化、及び MS バネによる 変動軸力を考慮した曲げ柱のモデル化により、架構の耐 震性能を適切に評価できる可能性が示された。

[参考文献]

日本建築防災協会:既存鉄筋コンクリート造建物の耐震診断基準同解説 2001
 日本建築防災協会:震災建築物の被災度区分判定基準および復旧技術指針
 2001

3) 芳村学、高稻宜和:破壊曲面縮小の概念に基づくせん断破壊型鉄筋コンクリート柱の残存鉛直耐力の評価 日本建築学会大会学術講演梗概 2007.8

- *1 東北大学大学院 修士課程
- *2 東北大学大学院 博士課程
- *3 東北大学大学院 准教授 博士(工学)

Graduate Student, Graduate School of Engineering, Tohoku University Doctoral Student, Graduate School of Engineering, Tohoku University Associate Professor, Graduate School of Engineering, Tohoku University.Dr.Eng.